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Abstract

Humans do not unconditionally trust what they see, but instead use their meta-
cognition to recognize when a percept might be unreliable or false, such as when
we realize that we mistook one object for another. Inspired by this capacity, we
propose a formalization of meta-cognition for object detection and we present
MetaCOG, an instantiation of this approach. MetaCOG is a probabilistic model
that learns, without supervision, a meta-cognition for object detection systems and
uses this meta-cognition to refine beliefs about the locations and semantic labels of
objects in a scene. We test MetaCOG’s performance when paired with a variety
of modern neural object detectors (Exp 1), and when paired with simulated object
detectors that enable us to test its robustness under different conditions (Exp 2).
We find that MetaCOG can quickly learn an accurate meta-cognitive representation
of object detectors and use this meta-cognition to infer the objects in the world
responsible for the detections.

1 Introduction

Building accurate representations of the world is critical for prediction, inference, and planning in
complex environments [1]. In human vision, these representations are generated by a perceptual
system that transforms light entering the retina into 3D representations of the physical space and the
objects in it [2, 3]. While human perception is generally robust and reliable, it nonetheless suffers
from errors, such as when we confuse one object for another, or when we experience a visual illusion.
In these situations, people use their meta-cognitive representation—their meta-cognition—of the
workings of another cognitive system [4] to help them recognize that their visual system has failed
them and adjust their representations accordingly.

End-to-end object recognition models face a similar challenge: how can we identify when a non-
existent object is incorrectly detected (hallucinations), or when a real object is not reliably recognized
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(misses)? Traditional approaches to this problem have focused on increasing the training data
[5, 6] or improving the model’s architecture [7, 8]. While valuable, these methods continue to be
prone to errors, particularly when confronted with data that was not adequately captured in training
[9]. We propose that this problem can be reduced by augmenting object detection models with a
meta-cognitive system that represents the object detector’s behavior.

The central component in our characterization of a meta-cognition is a joint distribution expressing
the relationship between the object detections produced by a detector, and the true objects in a scene.
This distribution therefore represents the object detector’s performance, which helps determine which
object detections are trustworthy, and which should be questioned or dismissed. The challenge
therefore lies in learning an accurate meta-cognitive representation of the object detector.

Here we propose a formulation that can learn a meta-cognition of an object detector without any
access to its internal architecture or performance metrics and without any human annotation or
feedback. Given a pre-trained object detector and a dataset of images (partitioned into scene-specific
sets) and corresponding viewpoints, our approach performs joint inference over the objects truly
in a scene and outputs of the object detector. To construct an accurate meta-cognition we draw
insight from cognitive science. Infants come into the world equipped with a basic form of ‘core
knowledge’ [1, 10], grounding their visual experience in three-dimensional representations of the
world constrained by Spelke principles [11, 12]: objects persist through time and move continuously
through space. By grounding percepts on a 3D representation with object permanence, our model,
MetaCOG (Meta-Cognitive Object-detecting Generative-model), can learn an accurate meta-cognitive
representation of an object detector, and use it to refine its inferences about the contents of scenes.

We evaluate MetaCOG in two experiments that evaluate its ability to 1) infer an accurate representation
of the detector’s performance and 2) use this meta-representation to identify and correct missed or
hallucinated objects. In Experiment 1, we explore MetaCOG’s performance when paired with three
modern object detection networks, testing MetaCOG on a dataset of images of scenes rendered in
the ThreeDWorld (TDW) virtual environment [13]. In Experiment 2, we explore the MetaCOG’s
tolerance to faulty inputs.

Our work makes two main contributions. First, we propose a novel formalization of meta-cognition
in the context of object detection, and an inference approach where a meta-cognition can be learned
without feedback by conditioning inferences on cognitively-inspired Spelke principles. Second, we
present MetaCOG, an instantiation of this model that can learn a meta-cognition for object detection
models. We show that MetaCOG can quickly learn an accurate meta-cognition of an object detection
model without feedback and use it to make better inferences about what objects are where.

2 Related work

Meta-cognition in AI. Previous work has shown promise for the use of meta-cognition in improving
classification accuracy [14, 15]. While previous work focused on engineering an inflexible meta-
cognition to guide learning, we focus on a complimentary problem: learning a meta-cognition without
feedback for monitoring a neural network’s detections.

Computational cognitive science. Our work is also related to computational models of human core
knowledge [12, 16]. The difference is that our work uses object principles to learn a meta-cognition,
whereas past work has focused on modeling object principles themselves.

Uncertainty-aware AI. Our work also relates to uncertainty-aware AI. This work focuses on building
end-to-end systems that express uncertainty in their inferences [17, 18, 19]. Our work focuses instead
on how to learn a model of uncertainty over a pre-trained model. These two approaches complement
each other. In humans, meta-cognitive uncertainty supplements the intrinsic uncertainty in visual
perception.

3 MetaCOG

Figure 1 shows a conceptual schematic of MetaCOG and the domain that we apply it to. Here, a set
of images (Fig. 1A) are taken from the a single scene and then processed through an object-detector
to yield detector observations (Fig. 1B). The goal is to simultaneously infer 1) a representation of the
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Figure 1: Conceptual schematic of MetaCOG in the context of Experiment 1. A) A world state Wt

(consisting of an umbrella and a potted plant in a room). B) Images i taken from three viewpoints
sampled from a camera trajectory. C) Detections Ot output by an object detection network applied to
those images. D) MetaCOG’s inferences, estimating the world state Ŵt (objects with semantic labels
and locations in 3D space), and a meta-cognition V̂t (probabilities of missing or hallucinating objects
of each category). E) Re-labeling the images based on MetaCOG’s inferences, which can then be
used to re-train the neural network. Throughout the panels, correct detection are illustrated in white,
hallucinations in red, and MetaCOG’s filling in of previously missed objects in blue.

object detector’s performance (called the meta-cognitive representation or meta-cognition for short;
Fig. 1C), and 2) what objects are actually in the scene (the world state).

This meta-cognition is characterized by two category-specific probability distributions: one which
represents a belief over the number of hallucinated objects (detected, but not actually there) of each
category, and another which represents a belief over the number of missed detections (not detected,
but actually there) of each category. We refer to these collectively as the V -structure as it expresses a
belief about the veracity of the object detector.

MetaCOG consists of a hierarchical generative model with two levels (see Appendix, Figure 4). The
lower level captures a joint distribution between world states and object detections that is dependent
on V . The higher level describes the dynamics of the prior over V , capturing the idea that a meta-
cognitive representation can—and should—change with experience. We begin by presenting this
generative model (3.1) and then turn to how we perform joint inference over the world state and the
meta-cognitive representation (3.2).

3.1 Generative model

3.1.1 Object Detection Module

The goal this paper is to present an approach for buidling a meta-cognitive representation of an object
detection model that transforms images into object detections, each detection consisting of a category
and a position in the 2D image. We assume access to the camera’s state (its position and orientation)
for each image, which helps with inferring and tracking the location of different objects (as this is
not the main focus of our work). We additionally assume that images are grouped into sets captured
from the same world, but do not assume access to the underlying world state itself. Finally, the object
detector is a black box—MetaCOG does not have any access to its internal state or knowledge about
its performance.

Formally, let us assume as given a set O⃗ = (O1, . . . , OT ) of T detector observations. Each observa-
tion Ot = (NN(i1), NN(i2), . . .) is a collection of detections output from a given object detector
NN , which maps an image to detected objects and and their corresponding positions. Specifically,
NN(i) is a collection ((x1, y1, c1), (x2, y2, c2), . . .) where xi and yi are pixel-coordinates and c ∈ C
is an object category.
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3.1.2 World-state representation and Spelke principles

The images corresponding to each observation Ot are assumed to be snapshots of an underlying world
state Wt ∈ W. A world state is represented as a collection objects, each a tuple of the form (x, y, z, c)
where c ∈ C is an object category and x, y and z are coordinates in 3D space. Correspondingly, we
denote by W⃗ = (W1, . . . ,WT ) the collection of world states.

In our approach, Spelke principles are expressed as a prior over world states. The assumption of
object permanence implies that each world state has a fixed set of objects that does not change. Next,
the assumption that two objects cannot occupy the same physical position is implemented as a prior
over the locations of the objects in a world state. Finally, the assumption of spatio-temporal continuity
implies that any moving object must exhibit a continuous trajectory. Our Experimental task focuses
on inferring permanent fixtures in a room, so we therefore do not implement this constraint, although
doing so is a solved problem [12, 16]. Implementation details are available in A.1.3.

3.1.3 Meta-cognitive representation and dynamics

The object detection module is represented as two probability distributions per object category. The
first distribution captures the model’s propensity to hallucinate as a Poisson distribution with rate λc,
representing a belief over the number of hallucinations of objects of category c will be hallucinated
in a given frame. The Poisson distribution was chosen to represent hallucinations as we assume that
hallucinations are independent of each other and randomly distributed within and across images. The
second distribution captures the model’s propensity to correctly detect an object that’s in view. We
represent this through a Geometric distribution with rate pc encoding a belief over the number of
times an object of category c will be detected when it is present in the image. Conveniently, under
this formulation, the model’s miss rate for an object in category c is 1− pc. Because each distribution
is captured by a single parameter, the parameters of the probability distributions in the meta-cognition
V can then be represented as a pair of vectors of length |C| storing each category’s hallucination rate
λc and miss rate 1− pc. We call this pair of vectors θ.

The generative model described so far captures how MetaCOG represents the object detector’s
performance. However, an object detector’s propensity to hallucinate or miss objects can vary across
scenes, so leaving adjustable flexibility in V is a desirable property. At the same time, experience in a
previous scene includes critical information about the object detector that should inform expectations
about its performance in a new scene. Our generative model therefore includes an evolving kernel
Gt (Figure 4), capturing changing priors over the parameters θ for the probability distributions V .
See A.1.1 for details. For notation simplicity, V will refer to V |θ, and Vt to Vt|θt. We denote by
V⃗ = (V1, ..., VT ) the collection of probability distributions corresponding to each world state in W⃗ .

3.2 Inference

Given a collection of observations O⃗ (multiple sets of detections from multiple world states) and the
corresponding camera trajectories c⃗j, our goal is to infer Pr(V⃗ , W⃗ |O⃗, c⃗j), given by

Pr
(
V⃗ , W⃗ | O⃗, c⃗j

)
∝

T∏
t=1

Pr (Ot|Wt, Vt, cjt)Pr(Vt)Pr(Wt) (1)

The posterior, Eq. 1, is approximated via Sequential Monte-Carlo using a particle filter. The details
of the algorithms used for inference are described in A.1.4.

An estimate of the joint posterior can be sequentially approximated via:

Pr
(
V⃗ , W⃗ |O⃗, c⃗j

)
≈ Pr

(
V̂0

0
) T∏

t=1

Pr
(
Ot|V̂t

t
, Ŵt

t
, cjt

)
Pr

(
Ŵt

t
)
Pr

(
V̂t

t
| ˆWt−1

t
, ˆOt−1

t
)
(2)
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where Ŵ1
T
, . . . , ŴT

T
is the estimate W1, . . . ,WT after T observations, and V̂1

T
, . . . , V̂T

T
is the

estimate V1, . . . , VT after T observations. Here the transition kernel, Pr(V̂t
t
| ˆWt−1

t, ˆOt−1
t
) is

governed by the belief dynamics described in A.1.1.

3.2.1 Estimating V

After all T time steps in the particle filter, we estimate VT by taking the expectation of the marginal
distribution by averaging across particles weighted by their likelihood l: V̂ T

T,µ = E[V̂ T
T |O⃗] =

1
M

∑M
m=1(V̂

T
T,m ∗ lm), where m indexes the particles. This V̂ T

T,µ is the final estimate of the belief
about the true V after all observations have been observed. Given V̂ T

T,µ, the posterior predictive
distribution is defined as:

Pr
(
ˆ⃗
W |O⃗, c⃗j, V⃗ = V̂ T

T,µ

)
∝

T∏
t=1

Pr
(
Ot|Ŵt, cjt, Vt = V̂ T

T,µ

)
Pr

(
Ŵt

)
(3)

This posterior predictive distribution can then be used to make better inferences about world states
for novel scenes, WT+1, ... or for reassessing previous world states W1, ...,WT , that were originally
inferring using a less informed V .

4 Experiments

Our experiments have two goals: first, to test whether MetaCOG can learn an accurate meta-cognition
of an object detector, and second, to explore whether this learning confers any benefits to the system’s
overall accuracy. Experiment 1 tests MetaCOG’s performance when processing outputs of three
popular object detection systems (Section 4.1). Experiment 2 presents an analysis of how MetaCOG
performs as a function of an object detector’s baseline performance (Section 4.2). Throughout, we
evaluate MetaCOG by sampling scenes (arrangements of objects in a room), and then sampling a
collection of viewpoints from each scene (with the collection of viewpoints from a scene called a
video).

4.1 Experiment 1: Enhancing neural networks for object detection with a meta-cognition

Object detection models To test MetaCOG’s capacity to learn and use a meta-cognition, we
tested its performance when paired with three modern neural networks for object detection. These
networks represent three popular architectures: RetinaNet, a one-stage detector [20]; Faster R-CNN, a
two-stage detector [21]; and DETR, a vision transformer [7], all pre-trained (see A.3.1). See A.3.2 for
details for on post-processing. A couple of the networks were validated to ensure that their baseline
performance on our dataset was within their expected range (see A.3.3).

Dataset We evaluate MetaCOG on a dataset rendered in the ThreeDWorld physical simulation
platform [13] using one canonical object model per category (See A.2.1 for details). First, 100 scenes
were generated by sampling objects and placing them in a room with carpeting and windows (Fig
1a). For each scene, we then generated a video by sampling 20 frames from an agent’s trajectory
moving around the room. See A.2.1 for details. The final set of 100 videos was then randomly split
into a training and test set (each with n=50 videos). To avoid order effects, all reported results show
averages across four different video orders (See A.2.3).

Comparison Models We compare MetaCOG to two baselines in order to test if the learned meta-
cognition improves performance. First, we compare MetaCOG’s inferences against the processed
neural network output without meta-cognition. To isolate the contribution of MetaCOG, we use the
exact output that served as input to MetaCOG (see A.3.2 for details).

The computational structure of MetaCOG might improve accuracy without meta-cognition mattering
per se. For instance, mapping detetctions to 3D representations with object permanence alone
might improve accuracy. Alternatively, the meta-cognitive representation might provide tolerance
for rejecting sparse detections or interpolating missing detections on frames, but the exact learned
meta-cognition (i.e., the precise values of the parameters θ in V ) might not matter. To test these
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Figure 2: Results for MetaCOG and comparison models. A) Scatterplot showing MetaCOG’s inferred
values for the hallucination rates (circles) and miss rates (triangles) against the ground-truth values.
Blue-grey codes for DETR, magenta for Faster-RCNN, and yellow for RetinaNet. B) The MSE
of MetaCOG’s inferences about θ as a function of number of videos observed, color-coded by
NN. Shading depicts 95% CIs. C) Accuracy difference between MetaCOG and the two baseline
models, the NN’s output (red) and Lesioned MetaCOG (purple). Positive values indicated MetaCOG
outperforms the comparison models.

Table 1: Accuracy results for Experiment 1. Values in parentheses represent 95% bootstrapped
confidence intervals.

Object Detector Model Acc. Training Acc. Test

RetinaNet MetaCOG 0.721 (0.653, 0.785) 0.726 (0.664, 0.783)
NN Output 0.561 (0.518, 0.604) 0.535 (0.499, 0.572)
Lesioned MetaCOG 0.639 (0.568, 0.709) 0.564 (0.502, 0.626)

FasterR-CNN MetaCOG 0.790 (0.727, 0.846) 0.766 (0.709, 0.821)
NN Output 0.750 (0.698, 0.799) 0.686 (0.635, 0.736)
Lesioned MetaCOG 0.658 (0.589, 0.728) 0.581 (0.520, 0.642)

DETR MetaCOG 0.474 (0.425, 0.523) 0.438 (0.374, 0.507)
NN Output 0.211 (0.186, 0.238) 0.211 (0.185, 0.238)
Lesioned MetaCOG 0.483 (0.423, 0.546) 0.433 (0.369, 0.497)

possibilities we also compare our results against a Lesioned MetaCOG, where the values of θ were
set to the mean of the initial prior over θ (see A.5.3). Although this model has a meta-cognitive
representation V , that the parameters θ of that meta-cognition are neither learned nor updated in light
of new observations. This lesioned model contains the same representations and parameters as the
full model and therefore serves as a control for model complexity.

Results We first assessed MetaCOG’s ability to learn an accurate meta-cognitive representation V
(see A.4.2 and A.4.1 for operationalization). Figure 2A shows the relationship between the parameters
in MetaCOG’s inferred θ̂ and each network’s true θ, with an overall correlation of r = 0.951. Fig
2B shows the learning trajectory, visualizing the MSE of θ̂ for each network as a function of the
number of observed videos. After the 50-video training, MSEs decreased, on average, by 97.4% of
their initial values, and had already decreased by 93.5% after only 20 videos. This demonstrates
that MetaCOG can learn an accurate meta-cognition V |θ with access to a relatively small number of
scenes, all without access to ground-truth world states.

Table 1 and Figure 2C show MetaCOG’s accuracy relative to our comparison models (see A.8 for
operationalization). MetaCOG outperformed the two comparison models on the test set for all three
neural networks. On average, MetaCOG increased accuracy by 16.6% relative to the NN outputs in
the test set. Additionally, MetaCOG increased accuracy by 11.7% relative to lesioned MetaCOG,
confirming that MetaCOG’s success can be partially attributed to its learned meta-cognition, rather
than purely to the Spelke principles (see A.5.1 for additional results showing that MetaCOG’s
inferences about the presence and locations of objects at the level of 3D scenes rather than 2D images
also outperform those of Lesioned MetaCOG).
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Table 2: Faster-RCNN re-trained on MetaCOG’s inferred labels
Model Acc. Training Acc. Test

Pre-trained NN 0.750 (0.698, 0.799) 0.686 (0.635, 0.736)
NN re-trained with MetaCOG 0.843 (0.813, 0.871) 0.812 (0.789, 0.835)

While MetaCOG and Lesioned MetaCOG were matched in architecture and computational complexity,
MetaCOG and NN Output were not. This raises the possibility that MetaCOG’s success relative to
the neural network’s outputs is due to the additional structure, computational complexity, and access
to camera trajectories. To create a like-to-like comparison, we ran a secondary test where we train
Faster-RCNN (initialized to its pre-trained weights) using MetaCOG’s inferences. That is, because
MetaCOG infers what is where on each frame, these inferences can be treated as new synthesized
training set that can be used to train the neural network (all done without any human annotation;
see A.5.2 for details on the training procedure). Faster-RCNN trained on MetaCOG’s inferences
performed similarly to MetaCOG and better than its baseline performance before training (Table 2).
Beyond controlling for computational complexity, this results also demonstrates MetaCOG’s potential
to become a self-supervised learning system, and serves as a proof-of-concept that MetaCOG can
improve an object detection system.

4.2 Experiment 2: Robustness analysis

The results of Experiment 1 show that MetaCOG can quickly learn a meta-cognition for an object
detector and use it to improve accuracy. This provides proof-of-concept that MetaCOG can be
applied to modern neural network object detection systems. However, the performance of these three
networks does not capture the full space of possible object detection performances. How robust is
MetaCOG to different degrees of faults in its inputs? To evaluate MetaCOG’s robustness, Experiment
2 tests MetaCOG paired with a large range of possible object detectors. To achieve this, we created a
synthetic dataset of processed videos passed through simulated faulty object detectors. To reduce
the computational cost, these world states and observations were no longer scenes and images with
detections, but an abstraction of this process. Similarly, to reduce computational costs and to focus
on the contribution of meta-cognition rather than 3D representations, we used a lightweight, general-
purpose version of MetaCOG (see A.6) to infer a meta-cognition of the synthetic object detectors and
the world states causing the observations.

Dataset The dataset consisted of world states passed through simulated object detectors with differ-
ent degrees of faulty performance. To focus on the contribution of meta-cognition for determining the
presence or absence of different object categories, the dataset consisted of hypothetical collections of
objects with no spatial information. Specifically, we sequentially sampled world states (vectors of 1s
and 0s indicating the presence or absence of five possible object categories), object detectors (miss
and hallucination distributions V with a wide variety of parameters θ), and then generated a set of
observations passed through the probabilistic artificial object detector. The final dataset consisted
of 40000 randomly sampled object detectors, each processing 75 world states, with 5-15 processed
frames per world state. The details of synthesizing this dataset are left to A.7.

Comparison Models As in Experiment 1, we compare MetaCOG to Lesioned MetaCOG, which
fixes the parameters θ of the meta-cognitive representation V to the expectation of the prior over θ
(See A.6 for details on the prior over θ, and A.9 for details on Lesioned MetaCOG). This enables
a fair comparison where the two models are matched for computational complexity. Models are
described more formally in A.9.

Results Here, we demonstrate that, as in Experiment 1, MetaCOG can learn a system’s hallucination
and miss rates without feedback, and that its improvements in accuracy track with its learning of a
meta-cognition. See A.8 for definitions of the metrics used.

Figure 3 shows MetaCOG’s performance over the 40000 sampled object detectors. To assess
MetaCOG’s ability to learn an accurate meta-cognitive representation V |θ, we examined the MSE as
a function of the number of observed videos. Figure 3A shows that MetaCOG’s estimates θ̂t of the
hallucination and miss rates rapidly approach the true values θ, with a final average MSE of 0.00166.
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Figure 3: Model performance over 40000 sampled object detectors, each processing 75 world
states. A) MSE between true and inferred hallucination and miss rates as a function of number of
observations. Horizontal dotted line represents the average MSE for the mean of the prior (the θ used
in Lesioned MetaCOG). B) Mean accuracy as a function of number of observations. C) Accuracy for
MetaCOG and Lesioned MetaCOG as a function of faultiness (ζ) in the observation. D) Difference
in average accuracy between MetaCOG and Lesioned MetaCOG as a function of faultiness (ζ).

To test if learning varied as a function of the object detector’s errors, we next calculated MSE as a
function of the detector’s faultiness ζ , defined as the detector’s average proportion of errors per scene
(see A.8 for formal definition). A linear regression predicting MSE as a function of faultiness revealed
that MetaCOG’s learned θ̂ is less accurate for faultier detectors (β = 0.002; p < 0.001), although the
effect was minimal (predicting a MSE increase of 0.001 from a perfect detector with faultiness 0 to a
detector with faultiness 0.5, where detections are equally likely to be true or false). Together, these
analyses confirm that the results of Experiment 1 hold for a wider set of object detector performances.

Figure 3B shows the average accuracy of the models’ inferences about world states. The magenta
line shows MetaCOG’s rapid increase in accuracy over the first 40 observations. During these
observations, MetaCOG’s accuracy increases from 88.8% to 93.6% (with 93.8% final accuracy after
the 75th observation). This increase in accuracy occurs simultaneously with the decline in MSE for
the inferred meta-cognition’s parameters. By comparison, the blue line shows lesioned MetaCOG’s
performance, which showed an average performance of 91.2%. The orange line shows MetaCOG’s
accuracy after conditioning on the parameters θ̂T of meta-cognition learned after observing all the
videos (see A.9 for details).

To quantify MetaCOG’s abilty to make accurate inferences under noise, we next computed accuracy
as a function of the object detector’s faultiness ζ on a range from 0 (perfect performance) to 0.5
(detections equally likely to be true or false). Figure 3C shows MetaCOG’s and Lesioned MetaCOG’s
mean accuracies as a function of ζ. When faultiness is low, MetaCOG and Lesioned MetaCOG
performed near ceiling, as the object detector’s output is already highly reliable. However, MetaCOG
outperformed Lesioned MetaCOG in accuracy for detectors with faultinesses in ζ ∈ [0.12, 0.5].

Figure 3D shows the difference in average accuracy between MetaCOG and Lesioned MetaCOG as
a function of faultiness. MetaCOG reaches its highest accuracy boost over Lesioned MetaCOG at
faultiness level 0.42 (with a 21.8% improvement), but shows a consistent performance boost across
faultiness values. Together, these results show that MetaCOG’s success in Experiment 1 was not
limited to the particular performance values of the neural networks used. Instead, MetaCOG can
learn a correct meta-cognition for a wide range of object detectors and use it to improve accuracy.

5 Discussion

Here we proposed a formalization of meta-cognition for object detection which can be learned without
human feedback and used to improve a system’s inferences about the category and location of objects.
We presented an implementation of this idea, MetaCOG, a model that learns a probabilistic relation
between the detections produced by an object detection system and the true objects in the scene.
Given a set of detections from an object detection model with unknown performance, MetaCOG
performs joint inference over a meta-cognitive representation of the object detector and over the
objects causing the detections. This joint inference is made possible by grounding priors in Spelke
object principles. Applying MetaCOG to three modern object detection neural networks (Experiment
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1) and to simulated object detectors (Experiment 2) showed that MetaCOG can quickly learn an
accurate meta-cognition and use it to correctly infer the objects in a scene.

While our results show improvement in object detection accuracy, our formulation requires additional
information not usually included in object detection tasks. Our formulation requires access to camera
position and to scene boundary information (i.e., knowledge of when world state has changed). In
principle, these assumptions could be relaxed by extending the inference procedure to also recover
camera position and event boundaries. While this is a relatively straightforward extension, these
additional degrees of freedom could leave the problem of inferring an accurate meta-cognition too
under-determined for MetaCOG. On the other hand, our formulation might be particularly suitable
for embodied agents that, by tracking their movements in space, can determine camera position and
scene boundaries (e.g., resetting the scene when crossing through a doorway into a new room).

Beyond the problem of categorizing and locating objects in space, our approach may be useful in
related domains. In the most general form, our approach requires two things: 1) some assumptions
to enable disentangling which parts of a signal reflect the external state of the world and and which
parts reflect the faults of the system (e.g., in our model, using Spelke principles to determine which
detections revealed objects in the world, and which ones revealed errors in the neural network) and 2)
a proposed meta-cognitive representation (e.g., in our model, the distributions of hallucinations and
misses). For instance, our MetaCOG approach could be applied to the problem of face-recognition,
perhaps by 1) assuming the object principle that a person cannot be in more than one place at the
same time, and 2) a proposed meta-cognitive representation of a confusion matrix across face features.
This could allow a MetaCOG model to learn the recognition system’s biases, and perhaps to enforce
an expectation that all faces should be equally discriminable.

This idea also highlights an important limitation of our current approach: the structure of the
meta-cognitive representation is handcrafted to fit the problem. (In our case, the meta-cognitive
representation was handcrafted to represent the distribution of hallucinations and misses. MetaCOG
then learned the parameters of the distributions without supervision, but not the structure of the
representation itself.) This means that extending our approach to new domains requires human
intervention to determine what meta-cognitive representation to use. This limitation could be
addressed by extending the inference procedure to search over a space of possible representations
for expressing meta-cognition, using a method like the one in [22]. The ability to change the
representation of the meta-cognition might also be further useful for the object detection problem that
we considered. For instance, our representation captured hallucinations and misses at the category-
level (which we tested by using a single exemplar per category). When an object detection system
shows within-category variability (e.g., has a high chance of missing a lawn chairs but not desk
chairs), breaking the category-level representation into sub-categories could be fruitful.

Finally, our work focused on learning a meta-cognition for the purpose of improving accuracy, but
the abstract meta-cognitive representation also has potential benefits for interpretability. In our
implementation, MetaCOG’s V captures the object detector’s performance in a way that is easy for
humans to understand. As such, this approach of learning a meta-cognition may also be able to
support explainable AI by generating simplified meta-representations of a model’s performance. We
hope to explore this possibility in future work.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We believe we have shown a proof of concept that
MetaCOG 1) can learn an accurate representation of an object detection system’s
performance, and 2) use this learned meta-cognitive representation to make better
inferences about the objects causing the detections.

(b) Did you describe the limitations of your work? [Yes] See Discussion in Section 5
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Code and data
for reproducing the main results will be located at: link

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The dataset (and split) is described in 4.1. Hyperparameters for
MetaCOG in Experiment 1 are described in A.1 and following subsection, and for
Experiment 2, they are described in A.6 and the following subsection.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All errorbars are 95% bootstrapped CIs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See A.10

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the NNs we
used in A.3.1, the environment for rendering the dataset in A.2.1, and the programming
language used for MetaCOG in A.1

(b) Did you mention the license of the assets? [Yes] The license of the NNs are given in
A.3.1, and the license of TDW (used to render the dataset) is given in A.2.1

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We included the dataset used in Exp 1 in the supplemental material located at: link

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix

A.1 Additional MetaCOG details

The MetaCOG model and inference were implemented in the Julia-based probablistic programming
language Gen [23], licensed under the Apache License Version 2.0.

A.1.1 Meta-cognitive Dynamics Kernel

At t = 0, each category’s initial hallucination rate λc is initialized from a Gamma distribution with
parameters α = 1 and β = 1. After inference over a scene, the prior over λc evolves by computing
the inferred number of hallucinations at time t (based on the difference between world state Wt and
observations Ot, see A.1.2), and updating the α and β parameters of the Gamma distribution as the
conjugate prior over the Poisson distribution in the meta-cognition V .

Beliefs about the miss rates evolve in an analogous manner. When t = 0, the detection rate pc for
each category is initialized from a Beta distribution with parameters α = 1 and β = 1 (equivalent to
a uniform distribution). The parameters from the Beta distribution are then updated as the conjugate
prior over the Geometric distribution, based on the inferred missed detections (by comparing Wt

against Ot, see A.1.2).

A.1.2 Details of procedure for taking the difference between Wt and Ot

Figure 4: Schematic depicting the forward gener-
ative model. Gt is the prior over meta-cognition
(Vt) at time t; Wt is the world state; and Ot are the
observations that are generated. Wt, Ot, and Gt

collectively influence Gt+1, the prior over Vt1 .

From a world state Wt and a set of observations
Ot, MetaCOG tries to infer which detection
were hallucinations or misses so as to update
the prior over the hallucination and miss rate.
The procedure for this inference is as follows:
first, the objects in Wt are projected from 3D
space to the 2D image. Then, for each object cat-
egory, the projected objects are matched up with
detections within radius σ = 200 pixels (equal
to the spatial noise parameter). After matching,
the number of unmatched objects per category
are counted, and considered to have been missed.
The number of unmatched detections are also
counted, and considered to be hallucinations.
This process informs the updating of the αs and
βs in the priors described in A.1.1.

A.1.3 Spelke
principles and generative model parameters

Implementation of Spelke principles was as follows. World states without object persistence were not
included in W, which is equivalent to implicitly setting their prior probability to 0. The assumption
that two objects cannot occupy the same region in space was implemented through a prior over W
where the probability of having one object near another decreased to 0 according to a Gaussian
distribution with σ2 = 1.

To account for noise in a detector’s location detection Ot, each detection was modeled as having 2D
spatial noise, following a Gaussian with σx,y = 200 pixels.

Finally, the full generative model requires specifying a prior distribution over camera positions and
focal points (although these are observable), set as uniform over 3D space, and a prior distribution
over expected number of objects in a scene, sampled from a geometric distribution with parameter
p = 0.9 (with a uniform prior over category type).
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A.1.4 Inference Procedure Implementation

We sequentially approximate the joint posterior given in eq. 2 using a particle filter with 100 particles.
The solution space to the inference problem that we consider is sparse, and Sequential Monte-Carlo
methods can suffer from degeneracy and loss of diversity in these situations. Our inference approach
solves these problems by implementing particle rejuvenation over objects, locations, and beliefs about
V . Rejuvenation is conducted using a series of Metropolis-Hastings [24] moves with data-driven
proposals designed to obtain samples from Pr(V⃗ , W⃗ |O⃗, c⃗j).

During object rejuvenation, a new state W ′
t is proposed by either adding or removing an object from

the current state Wt. The probability p of proposing adding or removing an object depends on the
belief about Vt and the observed detections. The number of detections across the five categories are
summed. Call this sum k. The probability p of k or more detection being produced by hallucinations
is calculated as p = 1− e−λtotal

∑k
i=0

λi
total

i! ), where λtotal =
∑

c(λc). (That e−λtotal
∑k

i=0
λi
total

i!
term is the cdf of Pois(λtotal) from 0 to k.) This way, when the belief about the overall hallucination
rate is high relative to the number of detection, the probability p of proposing adding a new object to
the world state is low, but when the hallucination rate is low relative to the number of detections, the
probability p of proposing adding a new objects is high.

Objects in Wt have a weighted probability of being removed to produce W ′
t , such that their probability

of removal is inversely proportional to the number of times the object was observed in scene t. New
objects are added based on a data-driven distribution. This distribution samples object categories from
a categorical distribution biased towards categories observed in the current scene t (see A.1.5). With
probability 0.5, location is sampled from a 3-D uniform distribution, and otherwise sampled from a
data-driven function with location biased toward 3D points likely to have caused the 2D detections
(see A.1.5). The proposal for adding a new object or removing and existing object from the world
state is accepted or rejected according to the MH algorithm.

After a proposed change to W , a second rejuvenation step is performed on locations, wherein an
object in W is randomly selected (with equal probability) to have a new location proposed. With
probability 0.5, the new location is drawn from a multivariate normal distribution centered on the
previous location, and it is otherwise sampled from a data-driven proposal (see A.1.5). The proposed
world-state W ′ with a perturbed location is then accepted or rejected according to the MH algorithm.

Finally, new parameters θ′ for the meta-cognition are proposed by perturbing θ. Each parameter in
the pair of length |C| vectors is perturbed, with new values generated for θ(i, j)t and for θ(i, j)t−1

∀i, j, where i indexes the two vectors and j indexes their elements. The new value for each θ(i, j)t is
sampled from the appropriate distribution (Beta for the miss rate, Gamma for hallucination rate) with
αt and βt, while the new value for V (i, j)t−1 is sampled with αt−1 and βt−1. These new values are
accepted or rejected according to the MH algorithm.

This three-step rejuvenation process for world states, locations, and parameters of the meta-cognition
is done for each particle for 200 iterations and the last state reached in the chain is used as the new
rejuvenated particle.

A.1.5 Data-Driven Proposal Function

During rejuvenation, new objects are proposed to be added to W ′
t using a data-driven distribution. The

category of the object is comes from a categorical distribution, the weight is divided proportionally to
the number of times that object was observed in the scene t. Object that were not observed in the
scene get a weight as if they were observed once. With probability 0.5, the location is sampled from a
3-D uniform distribution, and otherwise sampled from a data-driven function. Using the data-driven
function, the point is sampled based on proximity to the line-segment that, when projected onto the
2D image, would result in the point where the detection was observed. The probability of proposing
a particular point decreases with the distance from this line segment, following a Gaussian with
σ2 = 0.01.

In the second rejuvenation step a new location is proposed for an object. With probability 0.5, the
new location is drawn from a multivariate normal distribution centered on the previous location, with
σx,y,z = 0.01. Otherwise, it is sampled as described in the previous paragraph (based on proximity
to the line segment that would results in the detection’s 2D location).
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A.2 Experiment 1 Dataset

Evaluating Experiment 1 we needed a dataset of videos of the same COCO object categories (so
pre-trained NNs could detect them) across multiple videos. These videos had to include the camera
trajectory and position. Furthermore, so as to enable use to assess MetaCOG’s accuracy locating
objects in 3D space, we also needed ground-truth labels for the objects, including their locations in
3D space. Because we did not identify any existing datasets that satisfy all these constraints, we
rendered our own, custom dataset.

A.2.1 TDW scene rendering

The TDW environment is licensed under the BSD 2-Clause "Simplified" License, Copyright 2020
Massachusetts Institute of Technology. We used the "box room 2018" model with a footprint with
dimensions ≈ 12 x 8. For scale, the largest object model is about 1 unit along any face.

The number of objects in the scene is uniformly drawn from the counting numbers up to 3 and each
object is uniformly assigned one of 5 object categories: potted plant, chair, bowl, tv, or umbrella. We
sequentially place objects at locations drawn from a uniform distribution, resampling if two objects
are within 1 units of each other or the walls so as to avoid collisions.

A.2.2 Camera Trajectory Sampling

A camera trajectory consists of a sequence of camera positions and focal points. We generate frames
by querying the camera for an image at 20 linearly-spaced times.

Figure 5: Three sampled agent trajectories. The
wide circular patterns at the top are camera posi-
tions, and the smaller patterns near the bottom are
camera focal points.

Camera trajectories consisted of a circular path
around the periphery of the room with noise,
generated by a Gaussian process with a radial
basis function (RBF) kernel with parameters
σ = 0.7 and ℓ = 2.5. The height of the cam-
era is held constant at y = 2. The focal point
trajectory is also sampled from a Gaussian pro-
cess with an RBF kernel, mean above the cen-
ter of the floor and component-wise parameters
σ = 0.7 and ℓ = 2. Figure 5 shows some exam-
ple trajectories.

A.2.3 Video Counter-balancing

To avoid order effects, all tests were run with
four different videos orders. Videos were first
randomly labeled from 1 to 50, and the four
counterbalanced orders were: {1 ... 50}, {50 ...
1}, {26 ... 50, 1 ... 25}, and {25 ... 1, 26 ... 50}.

A.3 Details About
Neural Networks Used in Experiment 1

A.3.1 Pre-trained Weights

For Faster-RCNN, we used the resnet50 pre-
trained weights. For RetinaNet, we used the resnet50 pre-trained weights. And for DETR, we used
the resnet101 pre-trained weights. These NNs were pre-trained on the COCO dataset.

Faster-RCNN is licensed under The MIT License (MIT), RetinaNet under Apache License 2.0, and
DETR under Apache License 2.0.

A.3.2 Post-processing

We process the outputs of the object detectors by filtering for the 5 object categories present in the
scenes and then performed Non-Maximum Suppression (NMS) with an IoU (Intersection over Union)
threshold of 0.4 (applied only for RetinaNet and Faster R-CNN, as it is not typically used for DETR).
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As input to MetaCOG, we took the top five highest-confidence detections per frame. The reason
for taking the top five highest-confidence detection per frame, rather than all of the detections per
frame is that sometimes some networks, especially DETR, can output many detections for a single
frame. Typically, a confidence threshold is selected by fitting to ground-truth labels. But our setting is
unsupervised and meant to apply to situations where ground-truth labels are perhaps unavailable. So,
instead of fitting the confidence threshold using ground-truth, we took the top five highest-confidence
detections. On most frames and with most networks, the NNs rarely output more than 5 detections,
so in practice, taking the top 5 detections rarely affected the NN’s output.

A.3.3 mAP of NNs on our dataset

Using the COCO evaluator [5], we evaluated the pre-trained NNs on our dataset. Faster-RCNN has a
mAP of 39.4 on the training set, and 41.1 on the test set. This is similar to the mAPs reported for the
most challenging object categories, like plants. Faster-RCNN’s reported mAP for plant is 39.1 and
40.1 (on the PASCAL VOC 2007 and 2012 test sets, respectively) [21]. RetinaNet had a mAP of 35.9
on the training set, and 36.3 on the test set. RetinaNet’s reported mAP (across all object categories)
on the COCO test dataset is 39.1 [20]. This confirms that both Faster-RCNN and RetinaNet are
operating within their expected performance ranges.

A.4 Metrics for Experiment 1

We evaluate MetaCOG’s performance in three ways: 1) by testing whether it can learn an accurate
meta-cognition of the object detection module, 2) by testing whether the learned meta-cognition
improves inferences about which objects are where in 3D space, and 3) by testing whether the learned
meta-cognition leads to improved accuracy at detecting objects in the 2D images.

A.4.1 MSE for θ

To measure how well MetaCOG learned a meta-cognition, we calculated the MSE between the
inferred parameters θ̂ of the meta-cognition and the true parameters θ. The true θ was calculated
for each object detection system as described in the following section A.4.2. The squared error was
calculated for corresponding values in θ̂ and the true θ, then summed and divided by the total number
of values (2 ∗ |C|).

A.4.2 Calculating ground-truth θ

We needed a way, for a given image, to calculate how many times an object of each category
was missed or hallucinated by the object detector. There are many possible ways to define and
calculate ground-truth misses and hallucinations, but we chose a definition and procedure to match
the definition and procedure MetaCOG uses (see A.1.2).

We used the 3D position of the object, the camera, and the camera’s focus to determine whether
and where the object would appear in the image. We considered an object to be missed if the object
was in the image, but not detected within 200 pixels of its projected 2D location on the image. We
calculated the miss rate for a category c as the number of misses divided by the number of times an
object of category c was in view.

We considered a detection to be a hallucination if the detection occurred more than 200 pixels away
from the ground-truth projection. We calculated the hallucination rate for a category c as the number
of hallucinations of an object of category c divided by the number of frames.

The 200 pixel radius was set to match the radius used by MetaCOG in matching Wts to Ots (see
A.1.2).

A.4.3 Jaccard Similarity

The Jaccard similarity coefficient is a useful metric for evaluating inferences about which objects are
in a frame or scene. The Jaccard similarity coefficients measures the similarity between two sets by
taking the size of the intersection of two sets and dividing it by the size of the union of the two sets.
We can apply this measure to our setting by treating the object labels that were inferred as one set and
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the objects that were actually present as the second set. The Jaccard similarity coefficient is given by:

J(I,G) =
|I ∩G|
|I ∪G|

(4)

where, in our setting, I is the set of object labels that were inferred (i.e. I = {chair, chair, bowl}) and
G is the set of objects in ground-truth (i.e. G = {chair, bowl}). (In this example, J(I,G) = 2

3 .)

This Jaccard Similarity coefficient can be applied either at the frame or scene level, and is used in
both contexts in this paper.

A.4.4 2D Inference Accuracy

To assess the accuracy of of the both MetaCOG and the NNs in a comparable way, we wanted an
accuracy metric that could incooporate both which object categories are present, and where they are.
The NNs operate over 2D images, not 3D spaces, so we must make this comparison at the level of
2D frames. The standard metric for object detection accuracy on images is mean Average Precision
(mAP), which requires both a ground-truth 2D bounding box and an inferred/detected bounding
box. Unfortunately, MetaCOG outputs a point in 3D space, which can be projected to a point in 2D
space, but cannot be used to make a bounding box. But we still needed a metric by which to compare
MetaCOG’s object detection accuracy to those of the neural networks without a meta-cognition.

To solve this problem, we projected MetaCOG’s inferences about the 3D location of objects to a point
on each 2D image, and for the neural networks, we took the centroid of the bounding boxes. This
way, MetaCOG and the neural networks’ detections have the same format: an object label and a point
on the image, or a tuple of (c, x, y). Then, for each object category, we used the Hungarian algorithm
with Euclidean distances as cost to pair up the detections with the centroid of the ground-truth
bounding box. For each pairing, we simply coded whether or not the detected point was within the
ground-truth bounding box as 0 or 1. Last, we calculated the Jaccard similarity coefficient (see A.4.3)
defining pairs as within the intersection of the sets if and only if they pair received the 1 coding. In
other words, we counting up the number of pairs where the detection lay within the ground-truth
bounding box, and divided by and the union of the detection and ground-truth sets: the sum of the
number of unpaired detections, unpaired ground-truth bounding boxes, and number of total pairings.
To extrapolate this accuracy metric from frames to videos, we simply average across frame accuracy
for each frame in the video, and we average across videos to calculate overall accuracy. This accuracy
metric encodes, for 2D frames, accuracy at detecting both which objects are present and where they
are.

It is important to note that assessing accuracy at the 2D frame level is different from assessing
accuracy at the 3D scene level. Accuracy at the 2D level should depend on the objects that are in the
frame. For example, it could be the case that the scene contains a chair and a plant, but the chair is
only in frame once, while the plant is in frame 20 times. In that case, 2D accuracy should depend
more on identifying and locating the plant than the chair. This distinction will be important when we
assess accuracy at the level of the 3D scene in the next section.

A.5 Experiment 1 Supplemental results and information

A.5.1 3D Inference Accuracy

Our main results focused on MetaCOG’s accuracy in 2D images. This was necessary so that we
could evaluate its inferences against NN Output, because the object detection neural networks that we
use only provide location on 2D images. Although not our main focus, here we report supplemental
results evaluating MetaCOG’s capacity to infer 3D world states in Experiment 1. This allows us to
test MetaCOG’s inferences at the scene level (i.e., what objects are in the room and where are they?),
rather than at the frame level (i.e., what objects are visible at this time point and where are they in
this 2D projection?). Throughout, we compare MetaCOG only to Lesioned MetaCOG, as it is the
only comparison model that also produces results in 3D space.

We first evaluate MetaCOG’s accuracy in determining which objects are present in a scene (indepen-
dent of location). To do this, we calculated the Jaccard similarity coefficent (see A.4.3) between the
object categories inferred to be present in the scene, and those actually present. Table 3 shows Jaccard
similarity coefficient averaged across the scenes. We find that on the whole, MetaCOG outperforms
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Table 3: Scene-level accuracy results for Experiment 1. Values in parentheses represent 95%
bootstrapped confidence intervals.

Object Detector Model Acc. Training Acc. Test

RetinaNet MetaCOG 0.666 (0.577, 0.753) 0.607 (0.523, 0.688)
Lesioned MetaCOG 0.578 (0.492, 0.664) 0.481 (0.413, 0.554)

FasterR-CNN MetaCOG 0.757 (0.669, 0.838) 0.664 (0.577, 0.749)
Lesioned MetaCOG 0.575 (0.493, 0.660) 0.491 (0.425, 0.560)

DETR MetaCOG 0.455 (0.385, 0.527) 0.436 (0.368 , 0.506)
Lesioned MetaCOG 0.478 (0.403, 0.557) 0.456 (0.385, 0.528)

Table 4: Average 3D distance between inferred and ground-truth object locations

Object Detector Model Avg. Distance All Pairs Avg. Distance Shared Pairs

RetinaNet MetaCOG 0.367 (0.306, 0.418) 0.334 (0.271, 0.383)
Lesioned MetaCOG 0.380 (0.258, 0.472) 0.356 (0.262, 0.434)

FasterR-CNN MetaCOG 0.372 (0.313, 0.422) 0.298 (0.250, 0.339)
Lesioned MetaCOG 0.306 (0.253, 0.351) 0.305 (0.250, 0.352)

DETR MetaCOG 0.621 (0.429, 0.787) 0.413 (0.304, 0.504)
Lesioned MetaCOG 0.506 (0.330, 0.648) 0.471 (0.333, 0.588)

Lesioned MetaCOG, except for when paired with DETR, where the two perform comparably (as can
be observed by noting that the confidence interval of each model’s accuracy contains the mean of the
other, indicating that there is no significant different between the means).

Next, we evaluate MetaCOG’s accuracy in determining where the objects are in the scene. To do
this, we first paired the inferred and ground-truth object locations of the same category using the
Hungarian algorithm with Euclidean distance as the cost. We then averaged the distance between all
of the pairs, in both the training and test sets, resulting in an average distance between inferred and
ground-truth objects. The results in are shown in Table 4, in the Avg. Distance All Pairs column.

On the whole, Lesioned MetaCOG’s meta-cognition represents a system with a relatively high
hallucination rate (higher than the rates inferred by MetaCOG). That belief leads Lesioned MetaCOG
to only infer that an object was present when there were more detections of that object, and more
spatial information, leading to greater location precision for the objects it inferred to be present.
Consequently, Lesioned MetaCOG only infers the presence of the objects that are easiest to locate.

For a more fair comparison, we can examine the average distance between pairs of inferred and
ground-truth objects only for ground-truth objects that both MetaCOG and Lesioned MetaCOG’s
inferred to be present. These average distances are reported in the Avg. Distance Shared Pairs column
of Table 4. For objects that both MetaCOG and Lesioned MetaCOG inferred to be present, MetaCOG
consistently infers slightly better locations than does the Lesioned model.

For reference, the footprint of the room is ≈ 12 x 8, and the largest object is 1 unit across.

A.5.2 Faster-RCNN Re-training Details

We trained Faster-RCNN on the training set using MetaCOG’s inferences as ground-truth labels.
Since MetaCOG infers an object category and a 3D point, rather than a bounding box, we constructed
a 50x50 pixel bounding box centered on the MetaCOG inferred’s 3D point projected onto the 2D
image. Then, Faster-RCNN with pre-trained weights was trained on the 1000 images (50 videos *
20 frames) in the training set. The training set was augmented by flipping the images horizontally.
Faster-RCNN was trained for 10 epochs with a SGR optimizer (learning rate = 0.005, momentum
= 0.9, weight decay = 0.0005) and a learning rate scheduler (step size = 3, gamma = 0.1). The
classification head layer was not replaced because we wished to retain the information about the
COCO object categories Faster-RCNN had been pre-trained on, as the object categories in our dataset
were a subset of COCO categories.
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A.5.3 Lesioned MetaCOG

To whether learning the correct parameters θ for the meta-cognition actually matter, or if the priors
(over θ and the Spelke object principle priors over world states) do all the work of improving accuracy,
we tested a lesioned version of MetaCOG fixing the values in θ to the mean of the prior. The initial
prior over the hallucination rate for each object category is a Gamma distribution with with α = 1
and β = 1. The mean of that prior is then 1.0, so in Lesioned MetaCOG, the hallucination rates are
set to 1.0 The initial prior over the miss rate for each object category is a Beta distribution with α = 1
and β = 1. The mean of that prior is then 0.5, so in Lesioned MetaCOG, the miss rates are set to
0.5. So this lesion produces the expectation that an object of each category will be hallucinated on
average once per frame, and that, when an object is in view, it has a 50% chance of being missed.

A.6 Lightweight MetaCOG

In addition to the full MetaCOG model described in the main text, we also implemented a simplified
version for the simplified setting used in Experiment 2. This simplified setting is object detection
without location, wherein a black-box object detector generates labels (without associated locations)
for the objects present in a scene. So observations are collections of object labels. Furthermore, the
goal of inferences in this simplified setting is not to infer what objects are where in 3D space, but
merely which objects are present in the scene. Camera trajectories are no longer included, and all
object are assumed to remain in view at all times.

Additionally, the meta-cognition in this Lightweight MetaCOG is simplified as well: the prior over
the meta-cognition, G, does not vary with time, but is fixed as a Beta distribution with parameters
(α = 2, β = 10). Hallucination and misses are treated as Bernoulli random variables, with their
parameters θ sampled from the Beta prior, separately for each object category.

The inference targets and procedure are largely unchanged, with the estimate of joint posterior now
sequentially approximated via:

Pr
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V⃗ , W⃗ |O⃗

)
≈ Pr
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0
) T∏
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Pr
(
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t
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t
)
Pr

(
Ŵt

t
)
Pr

(
V̂t

t
| ˆVt−1

t
)

(5)

where the transition kernel, Pr(V̂ t|V̂ t−1), defines the identity function. The details of the inference
procedure are left to A.6.1.

A.6.1 Details of Inference Procedure for Lightweight MetaCOG

Equation 5 is estimated via particles filtering, with 100 particles.

We implemented rejuvenation using a series of Metropolis-Hastings MCMC perturbation moves over
θ̂. The proposal function is defined as a truncated normal distribution with bounds (0, 1):

ˆθi,j
t′

∼ N (µ = ˆθi,j
t
, σ2 = 0.01) (6)

where θi,j is the jth element of vector i in the pair of vectors of parameters θ. A proposal is accepted or
rejected according to the Metropolis-Hastings algorithm. Each element in θ is rejuvenated separately
and in randomized order.

A.7 Experiment 2 Dataset

Here we discuss how we synthesized the dataset for evaluating Lightweight MetaCOG in Experiment
2.

In this context, the object detector can be represented by its parameters, θ, which is a pair of vectors
of length |C| containing the hallucination and miss rates for each object category. The parameters
for each object detector was generated by drawing ten independent samples from a beta distribution,
∼ B(α = 2, β = 10). This distribution allows us to sample object detectors with variable error rates
(mean value = 1

6 ) while maintaining a low probability of sampling object detectors that produced
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hallucinations or misses more often than chance (0.005 chance of sampling values above 0.5; 0.06
chance that complete sampled object detector has at least one hallucination or miss rate above 0.5).

For each object detector, we sampled 75 world states. A Poisson distribution N ∼ Poisson(λ = 1)
truncated with bounds [1, 5] determined the number of objects in a world state. The object categories
were samples from a uniform distribution. Each world state was a hypothetical collections of objects,
summarized as a vector of 1s and 0s indicating the presence or absence of each category of objects.
For each world state we used the object detector to synthesize the detections from 5− 15 simulated
frames (number sampled from a uniform distribution), producing a total of 375− 1125 simulated
frames per object detector. Inferences about the hallucination and miss rates of each object category
are independent, and we thus considered situations with only five categories.

A.8 Metrics for Experiment 2

To measure how well MetaCOG learned a meta-cognition, we calculated the mean squared error
(MSE) between the inferred parameters of the object detector θ̂ and the true parameters θ generating
the percepts given by

MSE =
1

2|C|
∑
c∈C

(
(Hc − Ĥc)

2 + (Mc − M̂c)
2)

)
(7)

where C is the the set of object classes, Hc is the hallucination rate for category c, and Mc is the miss
rate for category c.

Accuracy was measured using the Jaccard similarity coefficient of the set of object classes in the
ground-truth world state Wt and the set of object classes in the inferred world state Ŵt, see A.4.3.

To analyze MetaCOG’s accuracy as a function of faultiness in the detected labels, we computed the
average faultiness in an observation Ot as

ζt =
1

|Ot||C|
∑
c∈C

∑
x∈Ot

|1Wt
(c)− 1x(c)| (8)

where C is the set of object classes, Ot is the collection of detected labels generated from world state
Wt, 1Wt

(c) is an indicator for whether an object of class c is in Wt, and 1x(c) is an indicator for
whether an object of class c is in the set of detected labels x.

Because our sampling-based dataset generation process (A.7) does not guarantee enough data points
for every possible faultiness value, analysis in Figure 3C and D were computed using a rolling
window such that each point shows average accuracy on the [ζ − .05, ζ + .05] range.

A.9 Comparison Models for Experiment 2

To test whether learning a meta-cognition improves inferences about the world state, we compare
MetaCOG with and without the meta-cognitive learning. We call MetaCOG without learned meta-
cognition Lesioned MetaCOG. Like the other MetaCOG models, Lesioned MetaCOG has a meta-
cognitive representation of V and uses an assumption of object permanence to infer the world states
causing the detected labels. Lesioned MetaCOG, however, does not learn or adjust the parameters θ
in its meta-represetation based on the observed labels. Formally, Lesioned MetaCOG assumes that
the hallucination and miss rates for every category are the mean of the beta prior over hallucination
and miss rates, call it θ̂0,µ. Lesioned MetaCOG then uses the same particle filtering process described
in 5, except that it conditions on θ̂0,µ instead of θ̂T,µ.

As described in A.6, the prior over both the hallucination rate and the miss rate is a Beta distribution
parameters (α = 2, β = 10). The mean of this prior is then 1

6 . So in the Lesioned MetaCOG for
Experiment 2, the hallucination rate and the miss rate are both set to 1

6 .

We also compare two variations of MetaCOG with learning. MetaCOG Learning performs a joint
inference over θ and W⃗ based on observations O⃗ sequentially, as observations are presented sequen-
tially. This model allows us to evaluate how MetaCOG’s inferences improve as a function of the
observations it has received. We name this model observation-by-observation inference MetaCOG
Learning.
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After having received all T observations, MetaCOG could retrospectively re-infer the world states
causing the T observations. This model, simply called MetaCOG, re-infers the world states that
caused its observations conditioned on its estimate θ̂TT,µ, as described in 3.2.1.

MetaCOG Learning lets us interpret how MetaCOG learns a meta-cognition, and MetaCOG lets us
test how MetaCOG performs after having learned that meta-cognition. Lesioned MetaCOG serve as
a baseline model for comparison.

A.10 Compute Resources

We estimate the compute resources used in producing the final results reported using our MetaCOG
model in Experiment 1. Running the MetaCOG (and Lesioned) model four times per each of the
three neural networks used 36 CPUs on an internal cluster for approximately 100 hours.
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