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Abstract
We develop a likelihood free inference procedure
for conditioning a probabilistic model on a pred-
icate. A predicate is a Boolean valued function
which expresses a yes/no question about a do-
main. Our contribution, which we call predicate
exchange, constructs a softened predicate which
takes value in the unit interval [0, 1] as opposed to
a simply true or false. Intuitively, 1 corresponds to
true, and a high value (such as 0.999) corresponds
to “nearly true” as determined by a distance met-
ric. We define Boolean algebra for soft predi-
cates, such that they can be negated, conjoined
and disjoined arbitrarily. A softened predicate can
serve as a tractable proxy to a likelihood function
for approximate posterior inference. However,
to target exact inference, we temper the relax-
ation by a temperature parameter, and add a ac-
cept/reject phase use to replica exchange Markov
Chain Mont Carlo, which exchanges states be-
tween a sequence of models conditioned on pred-
icates at varying temperatures. We describe a
lightweight implementation of predicate exchange
that it provides a language independent layer that
can be implemented on top of existingn modeling
formalisms.

1. Introduction
Conditioning in Bayesian inference incorporates observed
data into a model. In a broader sense, conditioning revises a
model such that a yes/no question (a predicate) is resolved
to a true proposition (a fact). For instance, the question of
whether a variable is equal to a particular value, changes
from a predicate of uncertain truth, to a fact, once it is
observed. In principle, a predicate can be used to declare
any fact about a domain, not only the observation of data.
In practice, sampling from models conditioned on most
predicates presents severe challenges to existing inference
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procedures.

Predicates can be used to update a model to adhere to known
facts about a domain, without the burden of specifying
how to revise the model. For example, in inverse graph-
ics (Marschner & Greenberg, 1998; Kulkarni et al., 2015)
(inferring three dimensional geometry from observed im-
ages), the proposition “rigid bodies do not intersect” is a
predicate on latent configurations of geometry. To manu-
ally revise a model to constructively adhere to this fact is
ranges between inconvenient and infeasible. Instead, we
would ideally simply condition on it being true, concen-
trating probability mass on physically plausible geometric
configurations, ultimately to yield more accurate posterior
inferences in the inverse graphics problem.

Predicates can also express observations that are more ab-
stract than variables in a model. In diabetes research for
example, probabilistic models have been used to relate phys-
iological factors to glucose levels over time (Levine et al.,
2017; Murata et al., 2004). Rather than concrete, numeri-
cal glucose measurements, a medical practitioner may ob-
serve (or be told) that a patient suffers from recurrent hypo-
glycemia, i.e., that their glucose levels periodically fall be-
low a critical value. Even if the occurrence of hypoglycemia
does not appear as an explicit variable in the model, it could
be constructed as a predicate on glucose levels, and con-
ditioned on to infer the posterior distribution over latent
physiological factors.

Several effective sampling (Andrieu et al., 2003) and vari-
ational (Jordan et al., 1999; Ranganath et al., 2014) ap-
proaches to inference require only a black-box likelihood
function, i.e., one evaluable on arbitrary input. The like-
lihood function quantifies the extent to which values of
latent variables are consistent with observations. However,
most models conditioned on most predicates have likeli-
hood functions that are intractable to compute or unknown.
For example, conditioning random variables that are deter-
ministic transformations of other random variables (e.g.,
the presence of hypoglycemia in the example above, or the
mean of a collection of variables) often results in likelihoods
that are normalized by intractable integrals. In other cases,
the likelihood function is implicit to a generative process,
rather than explicitly specified, and hence unavailable even
when the condition is a conventional observation.
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In this paper we present predicate exchange: a likelihood-
free method to sample from distributions conditioned on
predicates from a broad class. It is composed of two parts:

1. Predicate Relaxation transforms a predicate such that
it returns a value in a soft Boolean algebra: the unit
interval [0, 1] with continuous logical connectives ∧̃.
∨̃ and ¬.

2. Replica Exchange simulates several Markov chains
of a model at different temperatures. Temperature
is a parameter of predicate relaxation which controls
the amount of approximation it introduces. We adapt
standard replica exchange to draw samples that are
asymptotically exact from the unrelaxed model.

By returning a value in [0, 1] instead of {0, 1}, a soft pred-
icate quantifies the extent to which values of latent vari-
ables are consistent with the predicate. This allows it to
serve a role similar to a likelihood function, and opens up
the use of likelihood-based inference procedures. Orthog-
onally, we embed ]0, 1] in a Boolean algebra to support
the expression of domain knowledge of composite Boolean
structure. Continuing the previous example, we may know
that a person does not have hypoglycemia, or that they have
hypoglycemia or hyperglycemia, or neither.

Predicate exchange is motivated by probabilistic program-
ming languages, which have vastly expanded the class of
probabilistic models that can be expressed,, but still heav-
ily restrict the kinds of predicates that can be conditioned
on. Rather than introduce a new language or modeling
formalism, we mirror (Wingate et al., 2011) and provide
a light-weight implementation that performs inference by
modulating the execution of a stochastic simulation based
model. This means predicate exchange is easily incorpo-
rated into most frameworks.

Our approach comes with certain limitations. Equality con-
ditions on continuous variables indicate sets of zero measure.
This is problematic because the probability of proposing a
satisfying state in a Markov chain becomes zero. In these
cases predicate exchange must sample at a minimum tem-
perature strictly greater than zero, which is approximate.
Another limitation occurs if a predicate has branches (e.g.,
if-then-else statements) which depend on uncertainty in the
model.

In summary we address the problem of conditioning proba-
bilistic models on predicates as a means to express declara-
tive knowledge. In detail, we:

1. Formalize simulation based probabilistic models in
measure theoretic probability, and conditioning as the
imposition of constraints expressed as predicates (Sec-
tion 3).

2. Motivate predicate relaxation (Section 4.1), and pro-
vide a complete soft Boolean algebra.

3. Provide a light-weight implementation of predicate
exchange (Section 5) through nonstandard execution
of a simulation based model.

4. Evaluate our approach on examples, including a case
study in glycemic forecasting.

2. Related Work
Demand for likelihood-free inference emerged in genetics
ecology. Tavaré et al. (1997) compared summary statistics
of the output of a simulation with that of observed data,
and rejected mismatches. Weiss et al. (1998) expanded on
this with a tolerance term, so that simulations yielding data
sufficiently close to the targets were accepted. Approximate
Bayesian Computation (ABC) has come to refer to broad
class of methods (Beaumont et al., 2002; Sisson et al., 2007)
in this general regime. Marjoram et al. (2003) simulated
Markov Chains according to the prior, but introduced the
accept/reject stage to yield approximate posterior samples.
A small tolerance leads to a high rejection rate, whereas
a large tolerance results in an unacceptable approximation
error. Among several solutions are dynamically decreasing
the tolerance (Toni et al., 2008), importance reweighting
samples based on distance (Wegmann et al., 2009), adapting
the tolerance based on distance (Del Moral et al., 2012;
Lenormand et al., 2013), as well as annealing the tolerance
as a temperature parameter (Albert et al., 2015).

Predicate exchange targets simulation models and uses dis-
tance metrics, but targets exact inference without summary
statistics. A recent approach (Graham et al., 2017) with sim-
ilar objectives develops a Hamiltonian Monte Carlo variant,
using a quasi-Newton method during leap-frog integration
to exactly solve the observation constraint. This is limited
to differentiable models conditioned with equality.

Probabilistic logics such as ProbLog (Richardson & Domin-
gos, 2006) and Markov logic networks (De Raedt et al.,
2007) allow extend first order logic to declare both models
and conditions. More recent probabilistic programming sys-
tems (Milch et al., 2007; Wood et al., 2014; Mansinghka
et al., 2014; Goodman et al., 2008; Carpenter et al., 2017)
have focused on stochastic simulation, and automatically
automatically derive the likelihood function for a rich class
of models.

Several continuous (Levin, 2000) and fuzzy (Klir & Yuan,
1995) logics apply model-theoretic tools to metric structures.
Continuous logics replace the Boolean structure {T, F},
quantifiers ∀x and ∃x, and logical connectives with con-
tinuous counter-parts. Predicate relies uses a continuous
logic only make inference more tractable. Semantically,
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Figure 1. Sample from geometric prior (left), whereas (right) is
conditioned on no-intersection constraint

our approach remains within measure theoretic foundations,
which relies on hard predicates to condition.

3. Simulation Models
Probabilistic simulation based models specify the step-by-
step causal mechanisms of a domain, and use probability
distributions for any uncertain parameters. A simulation
model can be stochastically executed, using a random num-
ber generator to sample from primitive random variables in
the model. Inference means to simulate the model while im-
posing constraints on variables in the model. This is difficult,
since simulation based models lack an explicit likelihood
function, which is necessary for most inference procedures.

Conditioning on predicates requires a measure-theoretic
foundation, in which a simulation model is a random vari-
able:

Random Variables. Probability models lie on top of prob-
ability spaces. A probability space is a measure space
(Ω,H,P), where H is a sigma algebra and P(Ω) = 1
(Çınlar, 2011). Random variables are functions from the
space Ω to a realization space X . As a concrete example
the space Ω can be thought of as a hypercube, with P being
uniform over that hypercube. To build a normal random
variable, we need a function that maps from Ω→ R. If the
underlying probability space is uniform, then this function
is the inverse cumulative distribution function of the normal.

A modelM is a collection of random variables along with
a probability space.

Conditioning Conditioning a model creates a new model.
As an example consider a modelM with two random vari-
ables X1 and X2 that both take real values. Conditioning
M on X1 = 1, defines a new modelM|A based on limiting
the measure space Ω to the set A = {ω : X1(ω) = 1}. The
new model is defined on a new probability space

(Ω ∩A, {A ∩B,B ∈ H},P/P(A)) (1)

with the same random variables X1 and X2. Sampling from
M|A produces samples only where X1 = 1

More generally, conditioning on any predicate Y (ω) =
`(X1(ω), . . . , Xn(ω)) defines a new model defined exactly
as above, where A = {ω : `(X1(ω), . . . , Xn(ω)) = 1}.
Sampling fromM|A generates (x1, ..., xn) where ` is true.

The general construction of new models might require con-
ditioning on sets of measure zero. This process can be made
rigorous via disintegration (Chang & Pollard, 1997). Disin-
tegration can be thought of as the reversal of building joint
distributions through product measure constructions.

4. Predicate Exchange
To condition a modelM on a predicate Y we develop pred-
icate exchange, a likelihood-free inference procedure. It is
composed of two parts:

1. Predicate Relaxation constructs a relaxed predicate Ỹ
from Y . Ỹ takes values in a soft Boolean algebra: the
unit interval [0, 1] with continuous logical connectives
∧̃. ∨̃ and ¬.

Ỹ is 1 iff Y is 1, but otherwise takes nonzero values
denoting the degree to which Y is satisfied.

2. Replica Exchange is a Markov Chain Monte Carlo
procedure that exploits temperature. The strength by
which Ỹ relaxes Y is modulated by a temperature pa-
rameter α, which trades off between accuracy and ease
of inference. By simulating several replicas of Ỹ at
different temperatures, replica exchange is able to draw
exact samples.

4.1. Predicate Relaxation

A relaxed predicate Ỹ approximates Y in the sense that
when viewed as a likelihood function on model parameters,
Ỹ has a broader support, assigning nonzero weights to pa-
rameter values which have zero weight under Y . There are
three desiderata which govern this approximation. First, Ỹ
should have a temperature parameter α that controls the
fidelity of the approximation. In particular, Ỹ should con-
verge to Y as α → 0, and to a flat surface as α → ∞.
Second, the fidelity of the approximation should vary mono-
tonically with temperature. Third, Ỹ should be consistent
with Y on 1. That is Y (ω) = 1 iff Ỹ (ω) = 1 at all tempera-
tures.

Definition 1. A function Ỹ : Ω→ [0, 1] parameterized by
α ∈ [0,∞) is a relaxation of a Y : Ω→ {0, 1} if:

(i) For all ω ∈ Ω, limα→0 Ỹ (ω;α) = Y (ω).

(ii) For all ω ∈ Ω, limα→∞ Ỹ (ω;α) = 1.
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(iii) For all α, Ỹ (ω;α) = 1 iff Y (ω) = 1.

(iv) The entropy H(Ỹ (ω;α)) (which characterizes the fi-
delity of the approximation ) is an increasing function
of α.1

The construction of Ỹ from Y (Section 5) substitutes primi-
tive predicates (equality, inequalities and logical operators)
in the model with soft predicates. Soft predicates rely on
a notion of distance; the degree to which a predicate is
satisfied is a measure of closeness in a metric space. For
example if x and y are real values, then x =̃ y is defined
as kα(ρ(x, y)) where ρ is a distance function and kα is a
relaxation kernel paramterized by temperature α. In general,
we use p̃ to denote a relaxation of a predicate p. A relax-
ation kernel maps distances to values in [0, 1], and ensures
that Ỹ adheres to the outlined criteria. There are several
possible kernels but we restrict our attention to the squared
exponentional kernel:

kα(r) = exp

(
−r

2

α

)
(2)

Distance The distance ρ depends on the realization spaces
of random variables. For canonical spaces such as R
and N we default to Euclidean distances. For example,
x =̃ y is then defined as exp(‖x− y‖ /α). For ele-
ments of composite structure taking with a product typem
x, y ∈ T1 × · · · × Tn, by default ρ takes a mean ρ(x, y) =
(1/n)

∑n
i=1 ρ(xi, yi).

A soft inequality such as x >̃ y is function of the amount by
which x must be increased (or y decreased) until x > y is
true. This is the distance between x and the interval [y,∞],
where the distance between a point and any interval [a, b] is
the smallest distance between x and any element in [a, b],
and therefore 0 if x ∈ [a, b]:

ρ(x, [a, b]) =


a− b if x < a

x− b if x < b

0 otherwise
(3)

The intrinsic degree of satisfaction ˜̀
inf (m) of a realization

m = (x1, · · ·xn) of a model is then the smallest distance
between that realization and any point in the constraint set,
i.e.,

˜̀
inf (m) = ρ(m,A) (4)

where A = {(x1, . . . , xn) | `(x1, . . . , xn) = 1}, and
ρ(x,A) = inf {ρ(x, a) | a ∈ A} As shown in the Section 5,
˜̀
inf can be difficult to compute.

1By compactness, it is integrable for all α, when Ω has finite
dimension

x =̃ y = kα(ρ(x, y))

x >̃ y = kα(ρ(x, [y,∞]))

x <̃ y = kα(ρ(y, [−∞, x]))

a ∧̃ b = max(a, b)

a ∨̃ b = min(a, b)

Figure 2. Soft Primitive Predicates

Figure 3. Soft predicates as function of x. In all figures the blue
line denotes the soft predicate, while the red line denotes the
predicate to approximate.

Negation Negation is a necessary component of a
Boolean algebra, but its relaxation introduces complications.
To illustrate, Figure 3 (a) shows x >̃ 0 as a function of x.
In continuous logics (Kimmig et al., 2012), the negation of
a ∈ [0, 1] is 1− a. However, as shown in Figure 3 (b), this
violates criteria (iii) of predicate relaxation; there are values
which satisfy the hard predicate ¬(x > 0) which do take a
value of 1 in 1− (x >̃ 0).

The problem of negation arises because Ỹ is consistent with
Y at 1 but not at 0. In other words, Ỹ is a one-sided ap-
proximation. To overcome this challenge for models where
negation is used, a two-sided relaxed predicate yields a pair
(a0, a1), where a0, a0 ∈ [0, 1]. a1 preserves consistency
with Y on 1, just as before, while a0 preserves consistency
with ¬Y on 1 (or equivalently Y on 0). For example if
x >̃ 0 = (a0, a1), then as a function of x, a0 and a1 corre-
spond to Figure 3 (a) and (c) respectively.

A complete two-sided soft logic is shown in Figure 4.1.
Observe that soft negation simply swaps the elements of
(a0, a1) to yield (a1, a0). Although a two-sided predicate
has two components, for the sake of conditioning we are
still concerned only with the true side a1 in the pair (a0, a1).

Unsatisfiability Predicate exchange is unable to deter-
mine if a predicate is unsatisfiable (e.g. (x > 1) ∧ (x <
−1)), and defers to the user to ensure this is the case.
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x =̃ y = (if x = y then α else 1, kα(ρ(x, y)))

x >̃ y = (kα(ρ(x, [−∞, y])), kα(ρ(x, [y,∞])))

x <̃ y = (kα(ρ(y, [x,∞])), kα(ρ(y, [−∞, x])))

(a0, a1) ∧̃ (b0, b1) = (a0 ∧̃ b0, a1 ∧̃ b1)

(a0, a1) ∨̃ (b0, b1) = (a0 ∨̃ b0, a1 ∨̃ b1)

¬̃ (a0, a1) = (a1, a0)

Figure 4. Two sided soft primitive predicates

4.2. Approximate Markov Chain Monte Carlo

A relaxed predicate can serve as an approximate likelihood,
and as a result is amenable to likelihood based inference
methods such as Markov Chain Monte Carlo. MCMC al-
gorithms require a function f that is proportional to the the
target density. In Bayesian inference this is the posterior,
dictated by Bayes’ theorem as the product of the likelihood
and the prior. Approximate inference using relaxed predi-
cates takes a similar form.

LetM = (X1, . . . , Xn) be a model, Y be a predicate that
conditionsM, and Ỹ (ω) = ˜̀(X1(ω), ..., Xn(ω)) be a re-
laxation of Y . Assuming a prior density p, the approximate
posterior f is the product:

f(m) = p(m) · ˜̀(m) (5)

˜̀ down weights parameter values which violate Y by the
degree to which they violate it. This is modulated by the
temperature α used in the relaxation kernels which consti-
tute ˜̀. At maximum temperature ˜̀ has no effect, and the
approximate posterior f is equal to the prior p. At zero
temperature, f recovers the true posterior since parameter
values which violate the condition are given zero weight.

For illustration, let M = (µ,X) be a model where µ =
β(3, 4), X = N (µ, 1) conditioned on X2 = 0.5. The ap-
proximate posterior is shown at different temperatures in
Figure 5 and defined as:

fα(µ, x) = β0,1(µ) · Nµ,1(x) · kα(ρ(x, 0.5)) (6)

The temperature parameter trades off between tractability
of inference and the fidelity of the approximation. Too
high and Ỹ will diverge too greatly from Y . Too low and
convergence will be slow.

4.3. Replica Exchange

Replica exchange simulates (Swendsen & Wang, 1986) M
replicas at different temperatures, and uses a Metropolis-
Hastings update to periodically swap the temperatures

Figure 5. Approximate Posterior at varying temperatures. Temper-
ature decreases from top row to bottom. Along each row: (left) is
the prior term p, (center) is the soft likelihood term ˜̀, and (right)
is the approximate posterior f

of chains. If fαi is an approximate posterior function
at temperature αi, two independent parallel chains sim-
ulating targets fα1

(x), fα2
(y) they follow a joint target

fα1,α2
(x, y) = fα1

(x)fα2
(y). Replica exchange swaps

states between the chains while preserving the joint target.
Swapping states is equivalent to swapping predicates, which
motivates the name predicate exchange. Concretely, replica
exchange proposes a swap from (x, y) to (y, x), and accepts
it with probability min(1, A), where:

A =
fα1,α2(y, x)

fα1,α2
(x, y)

=
fα1(y)fα2(x)

fα1
(x)fα2

(y)
(7)

We modify standard replica exchange in two ways: (i) for
exact inference, states which violate the constraint are re-
jected, and (ii) unlike conventional replica exchange which
draws samples only from the zero-temperature chain, we
accept states from any chain so long as fαi(x) = 1.

Replica exchange has a number of hyper-parameters: the
number of parallel chains, the corresponding temperatures,
the swapping schedule. Several good practices are outlined
in (Earl & Deem, 2005). In practice, we logarithmically
space α between a lower and upper bound (e.g., log(α1) =
10−5, log(αM ) = 105), and swap states of chains that
are adjacent in temperature (α1 with α2, α2 with α3, etc)
periodically.
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5. Implementation
In this section we describe a generic, lightweight implemen-
tation of predicate exchange. Our approach closely mirrors
(Wingate et al., 2011; Milch et al., 2007) in the sense that
it provides a language independent layer that can be im-
plemented on top of existing programming languages and
modeling formalisms. Our objective is to twofold: (i) to
compute the prior term p, approximate likelihood term ˜̀,
and approximate posterior term f (Equation 6) from an ar-
bitrary program π, and (ii) to perform Replica Exchange
MCMC to sample from this posterior.

A program π can be an arbitrary composition of determin-
istic and stochastic procedures, but all stochastic elements
must come from a set of known elementary random primi-
tives, or ERPs. ERPs correspond to primitive parametric dis-
tribution families, such as the uniform or normal distribution.
Let T be a set of ERP types. Each type τ ∈ T must support
(i) evaluation of the conditional density pτ (x | θ1, ..., θn),
and (ii) sampling from the distribution. Concretely, a condi-
tioned program π is a any nullary program that contains the
statements:

1. rand(τ, n, θ1, ..., θn) returns a random sample from
pτ (x | θ1, ..., θn). n is a unique named described
below.

2. cond(y) conditions π. It throws an error if y ∈ {0, 1}
is 0, and otherwise allows simulation to resume with
no effect.

Example Program 1 illustrates a simple conditioned model.

5.1. Tracked Soft Execution

The prior term p is computed automatically as the product
of random choices in the program. That is, let πk|x1,...,xk−1

be the k’th ERP encountered in while executing π, xk be the
value it takes, and x denote the set of all values of all ERPs
constructed in the simulation of π, p(x) is the product:

p(x) =

K∏
k=1

pτ (xk | θ1, ..., θn) (8)

Crucially, the parameters θ1, .., θn for each random variable
may be fixed values or depend on values of other random
variables in π.

Predicate exchange relies on softexecute (Algorithm 3),
which formalizes the soft execution of a program π at tem-
perature α, in the context of dictionary D. D is a mutable
mapping from a set of names to values. In the context of a
particular dictionary, the simulation of a program is deter-
ministic. This allows the simulation of π to be modulated
by controlling the elements of D.

Example Program 1
x = rand(N , x, 0, 1)
y = rand(N , y, 0, 1)
cond(x > y)
Return: (x, y)

Example Program 2
x = rand(N , x, 0, 1)
if x > 0 then

cond(x = 1)
else

cond(x = −100)
end if
Return: x

softexecute simulates π but within a context where (i) vari-
ables `D and pD accumulate prior and approximate posterior
values, and (ii) the following operators are redefined:

1. rand(τ, n, θ1, ...θn) returns D(n), and in compliance
with Equation 8 updates pD with the conditional den-
sity. If n is not a key in D, the distribution is sampled
from and D(n) is updated with this value.

2. a op b and op a for op ∈ {>,<,=,∧,∨,¬} are re-
placed with the softened counter-parts õp ∈ {>̃, <̃, =̃
, ∧̃, ∨̃, ¬̃}.

3. cond(y) updates ˜̀D with ˜̀D ∧̃ y. y ∈ [0, 1] due to soft
primitive operators.

softexecute returns a real value for the approximate posterior
of f as a function of the dictionary D.

Control Flow Programs may have control flow con-
structs, such as if-then-else statements. These may cause
softexecute to return a value that is significantly less than
˜̀
inf . This is because if a branch condition is a function of an

uncertain value, then several unexplored alternative paths
could produce values that are closer to the constraint set.
softexecute is ignorant of thees other possibilities For illus-
tration, consider Example Program 2. If x = −1 the condi-
tion fails, and the predicate relaxation will yield x =̃ −100,
which is significantly larger than if the true branch were
taken.

Problems of this form appear in all forms of program anal-
ysis. This problem is called the path explosion problem,
since the number of possible paths often increases combina-
torially with program size and runtime length. Automated
program testing, which is concerned with finding program
paths that yield to failure has developed various strategies
(Cadar et al., 2008; Sen et al., 2005). Unlike automated
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Algorithm 3 Soft Execution: softexecute(π, α,D)

Input: program π, temperature α, dictionary D
Initialize ˜̀D = 1, pD = 1
Simulate π with following subroutines redefined as:
subroutine rand(τ, n, θ1, ..., θn)

if n ∈ D then
x = D(n)

else
x = sample from pτ (x | θ1, ..., θn)
Update dictionary: D(n) = x

end if
pD = pD · pτ (x | θ1, ..., θm)
Return from subroutine: x

end subroutine

subroutine cond(`′)
˜̀D = ˜̀D · ˜̀′D

end subroutine

subroutine op(x, . . . ) for op ∈ {>,<,=,∧,∨,¬}
Return from subroutine: õp (x, . . . )

end subroutine

Return: pD · ˜̀D

testing, probabilistic inference has the stricter requirement
of adhering to the true posterior distribution. However, in
predicate exchange, we have a latitude on all nonunitary
values. This opens up the potential for extending program
analysis methods to the probabilistic domain in future work.

5.2. Replica Exchange

Predicate exchange (Algorithm 4) performs replica ex-
change using softexectute as an approximate posterior. It
takes as input an mcmc algorithm, which simulates an
Markov Chain by manipulating elements of the D. In our
experiments, for finite dimensional continuous models we
use the No U-Turn Sampler (Hoffman & Gelman, 2014), a
variant of Hamiltonion Monte Carlo. We use reverse-mode
automatic differentiation (Griewank & Walther, 2008) to
compute the negative log gradient of f . For other models
we use standard Metropolis Hastings by defining proposals
on elements in the dictionary. In particular we use the sin-
gle site MH (Wingate et al., 2011) which modifies a single
random variable at a time.

6. Experiments
Small Models In Figure 7 we demonstrate two examples
of conditioning on predicates which are non trivial. First
we show that the conditioning can be used to truncate a
Gaussian distribution, and the approximation behavior at

Algorithm 4 Predicate Exchange
Input: program π, temperatures α1, ..., αm, nsamples n
Input: mcmc, nsamples between swaps q
Initialize D = empty collection of dictionarys
Initialize Dinit

1 , ...,Dinit
m empty dictionarys

Define fαi
(D) = softexecute(π, αi,D)

repeat
for i = 1 to m do
D1, ...,Dq = q mcmc samples at temp αi, from Dinit

i

Dinit
i = Dq

for j = 1 to q do
if fα1

(Dj) = 1 then
append Dj to D

end if
end for

end for
for i = m down to 2 do
j = i− 1
p = fαi

(Dj)fαj
(Di)/fαi

(Di)fαj
(Dj)

if p > random sample in [0, 1] then
swap αi with αj

end if
end for

until D has n elements
Return: D

varying temperatures. Second we show that two independent
random variables can be made equal. While simple, both are
a challenge for probabilistic programming systems because
they prevent automatic calculation of the likelihood.

Glucose Model Type 2 diabetes is a prevalent and costly
condition. Keeping blood glucose within normal limits
helps prevent the long-term complications of Type 2 di-
abetes like diabetic neuropathy and diabetic retinopathy
(Brownlee & Hirsch, 2006). Models to predict the trajecto-
ries of blood glucose aid in keeping glucose within normal
limits (Zeevi et al., 2015). Traditional models have been
built from compositions of differential equations (Albers
et al., 2017; Levine et al., 2017) whose parameters are esti-
mated separately for each patient. An alternative approach
would be to use a flexible sequence model like an RNN.
The problem with this approach is that an RNN can extrapo-
late to glucose values incompatible with human physiology.
This is especially a problem where we have patients with
only a few blood glucose measurements. To build an RNN
model that respects physiology, we condition on it.

We compare the independent RNN model to the one with
declarative knowledge on a second patient from Physionet
(Moody et al., 2001). Figure 8 plots the results performed on
more than 300 pairs of patients. We see that the conditional
model simulates more realistic glucose dynamics for the
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Figure 6. Posterior samples on different problems. RE: replica ex-
change, SSMH: Single Site Metropolis Hastings, HMC: Hamilto-
nian Monte Carlo. (Left) is target density, and following elements
are histograms from computed samples.

Figure 7. Left: Density from samples of Gaussian truncated to
[0, 1] through conditioning. Right: Conditioning on X = Y
where X and Y are independent normal distributions; shown at
different temperatures.

patient with only a short observed time-series.
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